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SUMMARY

A theoretical analysis is given for the flutter of simply supported rectan-

gular panels subjected to supersonic flow over one surface. Postbuckling effects

of in-plane edge loads and in-plane shortenings on the flutter speed are investi-

gated. The von K_rm_n large-deflection plate theory is used in conjunction with

linearized static aerodynamic strip theory. A Galerkin procedure using the first

two static buckling modes is employed to find the flutter criterion for panels

with ratios of length in the streamwise direction to half-wavelength in the

cross-flow direction between 0 and 2.

INTRODUCTION

Panel flutter at supersonic speeds has been encountered in the operation of

aircraft and missiles. (See, for exsmple, refs. 1 and 2.) A flutter analysis

for aircraft and missile panels is complicated by the presence of midplane com-

pressive stresses caused by aerodynamic heating associated with the supersonic

velocities and by the external lift and drag loading on the structure. The

analysis is further complicated if the compressive stresses are of sufficient

magnitude to cause buckling, because in the postbuckling state the flutter prob-

lem becomes nonlinear.

In an effort to determine effects of midplane compressive stresses on

flutter, a number of experimental and theoretical investigations have been made

for rectangular panels of uniform thickness which are flat in their unbuckled

states. In these investigations, both unbuckled and buckled panels subjected to

a supersonic flow over one surface were considered.

In the experimental investigations (see, for example, refs. 5 to 8), the

midplane stresses are introduced in various ways - by mechanical means, by

radiant heating, or by aerodynamic heating. In references 3 to 7 for finite-

width panels the susceptibility to flutter was found to depend on the streamwise

compressive stress in the panel not only for unbuckled panels but also for

buckled panels. Some insight into the nature of this dependence was found in

references 4 to 7. It was noted that increasing streamwlse compression (or



heating of a restrained panel) first decreases the dynamic pressure for flutter
(flutter speed) and then, after buckling, increase_ it. On the other hand, the
experiments of reference 8, which are applicable to infinitely wide panels, do
not showan appreciable change in flutter speed after buckling.

Effects of midplane stresses were investigated theoretically in reference 9
for unbuckled simply supported panels of finite width. The variation of flutter
speedwlthmidplane stresses found in qualitative agreementwith tests of
unbuckled panels. In another theoretical investigation of unbuckled simply sup-
ported rectangular panels (ref. 10), nonlinear aerodynamic and structural effects
were considered. The investigation of reference l0 rather than being concerned
with finding flutter boundaries w_s concerned with the order of magnitude of
initial disturbances necessary to produce flutter for speeds below those given
by the classical flutter boundary.

Past theoretical investigations of the flutter of panels in the postbuckled
state have all been limited to the two-dimenslonal idealization, the infinitely
wide panel. (See refs. 8 and ll to 16.) In reference 12 the static equilibrium
positions of the buckled panel were considered and a critical speed of flow was
found above which no stable static equilibrium existed. It was suggested that
flutter would occur above this critical value, which was termed the "transta-
bility" speed. References 8, ll, and 13 to 16 considered the dynamic problem for
various types of panel support conditions. As a result of the assumedtwo-
dimensional idealization, all these analyses (except ref. 15) yielded flutter
boundaries for buckled panels that are independent of variations of the magnitude
of the mldplane loads and, hence, are not in agreement with experimental observa-
tion for panel_ of finite width. In reference 15 additional effects of initial
curvature and of static-pressure differential across the thickness of the plate
were eonsidered. These effects were found to increase the flutter speed over
the entire range of values of mldplane loads.

The present analysis is concerned with buckled simply supported rectangular
panels having finite length-width ratios. In order to account for effects of
various types of edge connections on In-plane displacements, elastic edge sup-
ports are included in the analysis. Twotypes of In-plane boundary conditions
are considered; in the first type the magnitudes of the In-plane loads are specl-
fled, and in the second type the total In-plane shortenlngs and a unlformtemper-
ature changeare specified. Linearlzed static aerodynamic strip theory is uti-
lized in conjunction with the von K_n large-deflection plate theory. Effects
of statlc-pressure differential, which appear in manyexperimental Investlgatlons3
are included in the derivation. A Galerkln procedure, with two static buckling
modeshapes, is applied in order to find the flutter speed. Flutter boundaries
for zero static-pressure differential have been calculated for several specified
in-plane boundary conditions for ratios of the length in the streamwise direction
to the half-wavelength in the cross-flowdlrectlon equal to 0, 1/23 l, and 2.



SYMBOLS

A0,A1,B0,B1

a

b

CI, C2

CI, C2

C I, C2

D

E

h

KI,K 2

coefficients in displacement expressions (eqs. (24) and (25))

length of plate in streamwise direction

width of plate in cross-flow direction

coefficients for lateral displacement

coefficients for static lateral displacement

coefficients for dynamic lateral displacement

Eh 3

flexural rigidity, 12(1- _2)

Young's modulus

plate thickness

number of half-waves in cross-flow direction

amplitude of dynamic lateral displacements

aerodynamic loading per unit area, positive in z-direction

M Mach number

M1,M2,PI,P2,Q parameters defined in equations (31a) and (31b)

midplane stress resultantsNx,Ny, Nxy

Nxa2

nondimensional midplane stress resultants; _-,

Nxya2

_2 D , respectively

Nx, Ny, Nxy

average in-plane edge loads per unit length, positive in

compression

Px a2

_2D

Px,Py

nondimensional in-plane edge loads per unit length;

Pya 2
respectively

_2D '

Px,_ and



q

AT

_T

t

U,V

N --

U,V

_

w

x,y, z

_ =_-M2- i

_x,_y

6x' _y

7

4

static-pressure differential between surfaces of plate

a4 @'_nondimensional static-pressure differential, _ --Ap

dynamic pressure, 21--pV_2

temperature change, positive for increase

nondimensional temperature change, _ fkT
_2D

time

in-plane displacements, positive in x- and y-directions,

re spectively

nondimensional in-plane displacements, positive in x- and

y-directions; _ and Eha2v, respectively
_2D _2Db

total shortenings in x- and y-directions, respectively

nondimensional in-plane total shortenings; Eha Au and Eha2 f_v,

respectively

free-stream velocity

lateral deflection, positive in z-direction

nondimensional lateral deflection, positive in z-direction w_

rectangular Cartesian coordinates (see fig. I)

coefficient of thermal expansion

twice the flexibilities per unit length of elastic supports

(flexibilities associatedwith Px and Py, respectively,

see eqs. (13.))

Eh
nondimensional flexibilities; Ea-_X and _y, respectively

mass density of plate material



Cx, Cy, 7xy

_r

v

4 + +

When subscripts x, y, t, _, _, and T

partial differentiation with respect to x, y,

middle-surface strains

16qa 3
speed parameter,

N46D

flutter-speed parameter

Poisson's ratio

ratio of panel length in stream_ise direction to half-_velength

in cross-flow direction, Ja/b

nondimensional coordinates_ x/a and y/a_ respectively

free-stream density of fluid

nondimensional time, g2--tD_--

a2 VTh

circular frequency

follow a comma, they indicate

t, _, _, and T, respectively.

STATEMENT OF PROBLEM

The configuration analyzed in

this report is shown in figure i.

It consists of a simply supported

flat rectangular panel of constant

thickness h with air flowing at a

Mach number M over the upper sur-

face. (No flow of air is consid-

ered beneath the panel.) The In-

plane displacements at the edges of

the plate are considered uniform

but restrained by elastic supports
1 1

with flexibilities _x and _y

per unit length. Corresponding

average in-plane edge loads Px

and Py per unit length (positive

in compression) act through these

elastic supports. No in-plane

M---,_p--t

P,

IY _Av

___I

TAr

z

Figure i.- Rectangular panel and coordinate system.
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shearing forces are applied to the plate. For the first type of in-plane

boundary condition considered, the plate is subjected at its edges to specified

average in-plane edge loads Px and Py per unit length. For the other type of

in-plane boundary condition considered, the plate--elastic-support combination is

subjected to specified uniform total shortenings Au and _v while the plate is

subjected to a given temperature change AT.

Basic Equations

In the present analysis, the von K_rm_n large-deflection plate theory is

applied. For an aerodynamically loaded oscillating plate, the basic equations of

this theory can be written as

DV4w - Nxw, xx - Nyw yy - 2Nxywxy + 7hw tt = (i)

Nx,x + Nxy,y --0 (2)

 y,y+ Nxy,x : o (3)

where D = Eh3
is the flexural rigidity of the plate 3 7 is the mass

12(1- _2 )

density of the plate material, E is Young's modulus, and _ is Poisson's ratio.

Also, w is the lateral deflection of the plate; Nx, Ny , and Nxy are the mid-

plane stress resultants; and _ is the lateral load per unit area due to the

aerodynamic pressures. The variables w, Nx, Ny, Nxy , and Z are functions

of x, y, and t.

In this analysis use is made of the linearized static aerodynamic force

approximation. (See refs. 9 and ll.) This aerodynamic approximation previously

has been shown to yield flutter boundaries which are in good agreement with those

yielded by more exact aerodynamic theories provided that the Mach number is

greater than 2 and provided that the mass ratio (ratio of air-panel densities

times the length-thickness ratio of the panel) is sufficiently small. (See

ref. 9.) In addition it was demonstrated in reference 9 that for sufficiently

high values of the ratio of cross-flowwidth to streamwlse length (greater than

1/2) aerodynamic strip theory yields results in good agreement with surface

theory. Upon the assumption of linearized static aerodynamic strip theory, the

aerodynamic lateral loading is given by

=-2--% +rip (4)
,x

where 2---qw is obtained from Ackeret's theory and Ap is the static-pressure
,x
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I
differential between the surfaces of the plate. Here _ = _M 2 - 1 and

1 2
q = _V_ , where q is the dynamic pressure, P is the mass density of the air,

and V_ is the free-stream velocity of the airflow.

The stress-resultantwstrain relations_ which take into account effects of

a uniform change in temperature are given by the following equations:

Eh

Nx-- _-.2_x + _ - (I + _)_1

-- E_ - (1 + _)_ _]_y iT 2_y+_x (m)

where ex and ey are the middle-surface strains in the x- and y-directions_

respectively, %xy is the middle-surface shearing strain, m is the coefficient

of thermal expansion, and AT is a uniform temperature rise of the plate.

The strain-displacement relations are given by

£X = U3X + _X 2

Cy = V,y + 2_W,y2

7xy = U y + V x + W, xWy

(6)

in which u and v are the displacements of the plate in the x- and

y-directionsj respectively.

The boundary conditions for simply supported edges are

w(O,y,t) = w(a,y,t) = w(x,O,t) = w(x,b,t) = 0

ofW, xx(O,y,t ) = W, xx(a,y,t ) = W, yy(x,O,t) = W, yy(X,b,t) =

(7)



whereas those for uniform displacement of each edge in the plane of the plate are

u y(0,y#t) = U,y(a,y#t) = V,x(X,%t) = V,x(X,b,t) = 0 (8)

and those for zero in-plane shear stress at the edge of the plate are

v x(O,yjt ) = Vjx(a,y,t ) --U y(X,O,t) = U y(X,b,t ) = 0 (9)

The boundary conditions on loads are

Zo)x fo "

fo f0
(lO)

in _hich Px and Py are the average edge in-plane compressive loads per unit

length. (See fig. i.)

The boundary conditions given by equations (7), (8), (9), and (i0) are

sufficient if Px and Py are specified values. On the other hand, if the

total shortenings of the plate--elastic-support combination are to be specified,

those shortenings must be expressed in terms of the edge displacements and edge

loads on the plate as follows:

2_u = u(O,y,t) - u(a,y,t) + 6xPx[

_v--v(x,O,t)v(x,b,t)+ _Pyj

where Z_u and &v are the total shortenings (shortening of the plate plus

in-plane displacement of the elastic supports) in the x- and y-directlons,

respectively.

(ii)

Nondimensionalization of Basic Equations

In the ensuing analysis it is convenient to represent equations (1) to (ll)

in nondimensional form. After substitution of the expression for aerodynamic

loading (eq. (4)) into equation (1), the equilibrium equations (1) to (3) may be

8



written in terms of

a4N
and A_ = _D_ D Ap

_=_, _x:_x_--__
_2 D '

as follows :

Nxy =_
_2 D '

16qa 3

+8_ _ +- =z_"3 W I"I"

+ NyW, qq +

(12)

m

Nx, _ + Nxy, B = 0
(13)

m

Ny, q + Nxy,_ = 0 (15)

_2t_-
where _ -- a_, q = a_, and T = _.

The stress-resultant--strain relations given by equations (5) and the

strain-displacement relations given by equations (6) upon nondimenslo_alizing

become

12 a2 AT

a2(cy + _Cx)NY = _h2\ 1-#

6(1 - _) 2

(15)

and

Cx Eha 2\ ,_ + 2_t2 ,_2

_2D (_b-Vv 1 _ 2_

_y=_--_\_,,1+p ,,1/

= _2D (_

Yxy Eha2 _ ,
+M +.A__

,_ _t2 ,_w,_

(16)

9



where Z_ --_AT, _ = Eh_-_u,and V = Eha2v
_2D _2D _2Db "

The boundary conditions given by equations (7),
nondimensionalized become

(8), (9), and (i0) when

-(_) }
_(o,_,_)= _(l,_,_): _(_,o,_)= w _,K,_ = o

_._(o._._:__(_._._):_._(_.o._):_._,(_._._):
(17)

5,a(o,_,_) : _,a(_,_,_) = v,_(_,o,_)

v,_(o,_,_) : v,_(1,_,_) = _ _(_,o,_)

and

a a dq = -Px
b _0 g=O dq = _ _0 g=l

Jo'(_) Jo'(_y)
Pxa 2 Pya 2

where_x=--_--_n__y:7_--D"

Nondlmensionalization of the expressions for total shortenings from equa-

tions (ll) yields

(_8)

(_9)

where

z_ = _(o,,1,-,-) - _(",,l,',) + _x_x_

Z_ Eha Eha2 Av, _x Eh

(2o)

lO



ANALYSIS

The analysis is an approximate modal analysis consisting of two parts.

First, the in-plane displacements _ and _ and the stress resultants Nx, Ny,

and Nx_r are obtained in terms of an expression for lateral deflection _ that

includes two static mode shapes. Then, the resulting nonlinear equation (12) for

lateral deflection W is solved by means of a Galerkln procedure in order to

find the conditions for flutter. Flutter criteria are found for the two types

of boundary conditions considered, specified edge loads _x and#y and speci-

fied total shortenings Z_ and _V with a temperature change AT.

Solution of In-Plane Equilibrium Equations

in Terms of Lateral Deflection

Substitution of the nondimensional strain-displacement relations (eqs. (16))

into the expressions for stress-resultant--strain relations (eqs. (15)) yields

-%

-+ + + _w - +
= ___!__l_

1 -

NY i _2 _I] _u _ 2_ 2 , _w,

+ _) ,q _2 ,_ ,

(2l)

Then substitution of the stress resultants from equations (21) into the equilib-

rium equations (13) and (14) yields

=2 2' '_w'q ,q

i -p l+p_-
 ,nn + --7 + 2=2( ,q2 -- i 1= - _W

from which _ and V can be found in terms of the lateral deflection _.

The lateral deflection W is represented by the expression

(22)

/ \

= [C1 sin _ + C2 sin 2_{]sin, b
(23)

11



which satisfies term by term the boundary conditions given by equations (17). It

should be noted that the coefficients C1 and C2 are functions of time and are

to be determined through the application of the Galerkin procedure. When the

expression for _ from equation (23) is substituted into equations (22), the

solution of equations (22) subject to the boundary conditions of equations (18)

yields

_ = AO + All-_(2 + _v2)CiC2 sin _- i_(i- _v2)Cl2sin 2_

and

1-(2- _v2)ClC 2 sin _ ' _<4 - _w2)C22sin 4_

_CIC2F2 9v2(_-_ 4v2)] sin el 2

+ _-_[ + (i + 4w2)2J _ + _ sin 2_

+- + sin _r_ + sin 4_ cos 2_w_

12_ (9 + 4v2) 2 J

(24)

V = B 0 + BI_ + b w 16_v 2 - _ Cl 2

(1+4v2)2J +_ cos

CIC2F+(9-_v2)_ C22 4__sin2xvq÷_--[_(_+_)_coo_+ _ oo_
(25)

Jawhere v =--.
b

The stress resultants are obtained in terms of the coefficients AI, BI,

C1, and C 2 by substitution of the expressions for _, _, and V from equa-

tions (23), (24)3 and (25), respectively, into equations (21). In order for Nx

and Ny to satisfy the boundary conditions given by equations (19), the coeffi-

cients A 1 and B 1 must have the values

12



b Y + _Px + Z_ - C12 + C22

(26)

With these values, the stress resultants become

Nx = -Px + cos 2_v_

8 1 cos 2_ - _IC2 cos _ - 22cos 4_

9V2CLC 2 9v2CIC2+ 4(_+ 4_2)2cos_ + 4(9+ 4_2)2oos_ oos2_v_

3v2CIC2sin _ + 2(9 + 4v 2)2 sin 3_ sin 2_v_

(27)

Substitution of the expressions for _ and V from equations (24) and (25),

respectively, into the equations for total shortenings (eqs. (20)) yields

(28)

Solving equations (28)for Px and Py yields

÷

(29)

13



Approximate Solution of Equilibrium Equation for

Lateral Deflection by Galerkin Technique

The approximate solution of equation (12) for lateral deflection by a

Galerkin technique is now considered. The stress resultants Nx, Ny, and Nxy

are given in terms of C1 and C2 and in terms of specified Px and Py by

equations (27), or they can be given in terms of C1 and C2 and in terms of

specified 2_, AV, and ZkT by equations (27) after substitution of

equations (29).

When equations (23) and (27) (or eqs. (23), (27), and (29)) are substituted

into equation (12), the following equation results after expansion and

simplifi cat ion:

83-_XCIcos _ +

+ _ C12 + 3C22 +

_i + (-MI + PIC12 + QC22)Cl_ sin _

225C22

(l + 4v2)
+

q

49 _ C22CI sin 5_

(9 + _v2)

+ 43-_kC2 cos 2_ + _2 + (-M2 + P2C22 + QC12)C2_sin 2_

+ C12C2 sin 4xg - _ C25 sin 6_ sin xv_
(9 + 4v 2)

<-_(c 22_4c22+ 12+ _c22)+ 16(1+ 4v2)2+
49v4C22 _-_CI sin _

16(9+ 4_2)

81v4 C22C 1 sin 3_ +

16(1+ 4v2)2
v4 C22CI sin 5_

16(9 + 4v2)2

9v4Ci 2
+ +

16(1+4_2)2
25v4C12 l

16(9 + 4v2)_ C2 sin 2_

+ v4 ,)16(9 + 4V2) #12C2 sin 4_ sin 3_v_ = Ap

(3o)

14



where 3 for specified Px and Py3

81v _ v4

Q-- _ll + v_) + +_6(_÷4_)_ _6(9+_)_

or, for specified 2_, A_, and AT,

(3la)

_2=_(4÷v2)2

,,_-__].,;÷,,,),. 8E(].÷_)(,,._y)-,,_]

(3_b)

In equation (30) the double dots over the coefficients C1 and C2 represent

the second derivative with respect to _.

The Galerkln method is now applied by multlplying equation (30) by

sin r_ sin _ (where r = 1 and 2) and integrating over _ from 0 to 1 and
b

z_



over q from 0 to b/a.

CI + (-MI + PlCl 2 + QC22)CI - kC2

The resulting equations are written as follows:

e2+ (-M2+P2c22+QCl2)C2._cl--o

> (32)

The coefficients CI and C2 appearing in these nonlinear simultaneous differ-

ential equations can be expressed as

Cl(',) = C'l + _m(',)l
/

C2("r) C2 + C2('r)]

(33)

where C1 and C2 give the contribution of static deflection in the presence of
A A

airflow and C1 and C2 represent oscillations about the static configuration.

The coefficients C1 and C2 are determined from the following equations for

static deflection in the presence of airflow:

(34)

-M + P2_2 2 + Q_12)_2 + 'X_1 = 0 (35)

If equations (33) are substituted into equations (32) and account is taken of

equations (3/4-)and (35), and if attention is restricted to small oscillations

about the static deflection shape so that only linear terms of C1 and C2 are

retained, then there results

(36)

16



A solution of equations (36) can be written in the form

_ _D
C1 = Kle

^ _2 _D

C2 = K2e

(37)

where _ is the circular frequency, which can be complex.

Substitution of equations (37) into equations (36) yields

<_Th__a4# + + QC221KI + ~ _ _
~2 (2QCLC2 )K2= oMI 3PICI

D_ 4 _

2QCIC2 + KI + 2 _ M2 + 3P2C 2 + qCl K2 = 0

J

(38)

The circular frequency _, obtained by setting the determinant of the coeffi-

cients of K 1 and K 2 in equations (38) equal to zero, is given by the

expression

(D2 _--

27ha 4

(39)

The static configurations possible in the presence of airflow are found by

solving equations (34) and (35) for E 1 and C2. For each speed parameter

there may be several static configurations possible, each configuration corre-

sponding to a solution of equations (34) and (35). For example, if A_ = 0 or

if J is an even integer one such solution is the flat (or unbuckled)

configuration

E1 = _2 : o (_o)

which satisfies equations (34) and (35) for all values of k. The other solu-

tions of equations (34) and (35), corresponding to different deflected configura-

tions, are obtained in the following way.

17



First, solving equation (35) for k yields

k= C1
--- -M2 + P2C2 + QCI 2 (41)

This value of k is then substituted into equation (54) and the resulting equa-

tion is solved for C22:

C'22 2p 2
= l_!_ M 2 - 2QC12

j=2
(42)

Substitution of the expression for 922 from equation (42) into equation (41)

yields

For each real value of CI and A_, equations (42) and (43) will yield either

none, one, or two sets of real positive values of C22 and h£. Each of these

sets of value_ of CI 2, _22, and h2 obtained represent a possible deflected

configuration.

Stability Analysis

From equations (37), it can be seen that stable oscillations are assured as

long as the imaginary part of _ is zero or positive. In addition, from equa-

tion (39), the two values of _2 must be real and positive. For stability,

these conditions are assured if the following three inequalities are satisfied:

18



The stability of small oscillations about each of the static configurations,

determined by equations (40) or (42) and (43)_ is investigated by use of the

inequalitites (44) in order to find the flutter-speed parameter _cr" For a par-

ticular value of in-plane edge loading or shortening, the value of hcr is the

lowest value of _ for which no equilibrium configurations are possible about

which small oscillations are stable.

RESULTS AND DISCUSSION

Flutter-speed parameters can be determined from equations (40), (42), (43),

and (44), in conjunction with equation (31a) for specified in-plane edge loads

F--x and Py or with equation (31b) for specified in-plane total shortenings 2_

and AT and temperature increase ZXT. In general these equations include

effects of elastic in-plane edge supports (Px and _y)and static-pressure dif-

ferential _. Numerical results are presented only for zero static-pressure

differential and Px = py = O. However_ qualitative effects of static-pressure

differential are briefly discussed.

Results for Zero Static-Pressure Differential

Results, which show flutter boundaries and various regions of stability, are

presented for four in-plane boundary conditions in figures 2 to 5 for several

ja
values of v = m. Figures 2j 3, and 4 show results for three cases of speci-

b

fied in-plane edge loadings; figure 2 for P--x with P--y= O, figure 3 for _y

with _x = % and figure 4 for Px = _y" Figure 5 shows results for a speci-

fied temperature change 2_ with zero total shortenings (A_ = _V = O) for

P--x= _y = O. The results of figure 5 also correspond to specified edge short-

enings _ = AV for a zero temperature change (2_ = 0) for Px =_y = 0. In

all four cases, results are shown in the unbuckled as well as in the buckled

range. In the unbuckled range the analysis reduces to the two-mode solution of

reference 9-

19



2O

b

!

\

L I I

_o

cO

o

_ 0
m

i

./

t

ii

I I I
0

U

v

II

v

w_ ....

p
J

i
/

I I I

o_

0

0

00
\

fso_ _ _--._

I I I

v

II

0

0

%
II

4 _

!



I

qd

I

/
/

/

i
/

o
- o

_ o

s-

O

o

o

o

I

b

u..

o
_o

_o

-8

-0

0
Od

o

11

I1

v

1<

o o 0

-o

o

I1

icL_ _,

v

o_

o

b

I I
o o

_o

- o

o
,4

II

.- 10._
1 ._ !

/

o ._.

", _o
\\

1
o o

11

0

,-t

0

!

I,o,

21



I

I

b

I<

4

_<

ii

v

I<

d

i<

I I I

0

0

11

I

b

J I I
0

n

A
n

it

o
r.-t

r/1

o
,.'-t

0

o

rd

_r

0
rH

k

I

22



L

eu

0

11

II

v

b

I I I

I

II

0

-- v

O

0

II

It

g

t: °

_ u
.0

_ 0_

.-t

II

_ m

a?

%

r_
!

_5



Stability regions.- In each of figures 2 to 5, the solid curve is the

flutter boundary yielding hcr} flutter occurs for speed parameters h which lie

above this curve. In each of the regions below this curve one or more static

equilibrium configurations are possible and small oscillations about at least one

of these configurations are stable. In order to facilitate the discussion of the
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Figure 6.- Typical regions of stability and of flutter.

various regions of stability

and instability, these regions

are labeled A 3 B, C, D, E, and

F in figure 6, which is typi-

cal of the results shown in

figures 2(a), 2(b), 2(c), 3,

4, and 5. The stability of

the various regions in the

special case of figure 2(d)
is determined in a similar

manner.

The unbuckled configura-

"_C1 = C2 = O)" is a pos-tion

sible equilibrium configura-

tion in all of the regions

shown in figure 6. Buckled

configurations are found to

be possible in regions B, C,

D_ and E_ region C contains

one such configuration,

regions B and D contain two

each, and region E contains

four. The variation of _i 2

and -C22 with % for these

buckled configurations is

illustrated in figure 7 for

typical illustrative paths I,

II, IIl, and IV which are

shown by the dotted vertical

lines of figure 6. The

points labeled by the lower-

case letters in figure 6

correspond to the similarly

labeled points of figure 7.

The four buckled equilibrium

configurations are designated

ib, 2b, 3b, and 4b in fig-

ure 7. The equilibrium con-

figurations possible in the

various regions of figure 6
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and the stability of small oscillations about these configurations are presented

in the following table:

Region

A

B

Equilibrit_n Stability of

configuration oscillations

Flat Stable

Flat and Ib Stable

2b Unstable

lb Stable

Flat Unstable

ib Stable

Flat and 2b Unstable

Ib and 3b Stable

Flat# 2b_ and _b Unstable

Flat Unstable

In region F, the only equi-

librium configuration possible

is the flat configuration and

oscillations about this config-

uration are unstable; there-

fore, this is a region of

flutter. In regions A, B, C,

D, and E, either one or two

equilibrium configurations

are possible, about which

small oscillations are stable}

therefore, these are regions

of no flutter.

_'_ Equilibrium configuratbns

Ib

_i 2 ....... 2b.................3b

...... 4b

0 _

_IJ-.-'bo

),

(a) Path I.

_2

C,

_2
C,

b_ /

>,

(b) Path II.

./
/

>,

>°
_2 _.22 ..... -., f

(c) Path III. (d) Path IV.

Figure 7.- Variation of _l 2 and C'22 with
for buckled configurations,

Effects of length-width ratio and loading conditions.- Results are given in

figures 2 to 5 for v = ja/b = O, 1/23 l, and 2 which for j = 1 (one half-wave

in cross-flowdlrection) correspond to ratios of length to width equal to O, 1/2,

l, and 2, respectively. The abscissa in each of these figures (with the excep-

tion of fig. 2(d)) includes only those values of edge-loadparameter up to the

one that corresponds to buckling, without airflow, into three half-waves in the

streamwise direction. Results for higher values of the abscissa would be of

doubtful value because of the assumed two-mode solution used in the analysis.

a

The parameter v = b-_ corresponds to the length of panel divided by half the

wavelength in the cross-flow direction, where J is the number of half-waves in

the cross-flow direction. In applying the results of figures 2, 3, 4, end 5 to a

particular value of a/b, it should be noted that for values of the abscissa in

the unbuckled range, the lowest value of flutter-speed parameter is always yielded

by J = 1 although for values in the buckled range other values of J may be

more critical.
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The flutter-boundary results for v = 0 in figure 2(a) for specified _x,

in figure 4(a) for specified P--x= Py, and in figure 5(a) for specified Z_ = _V

correspond to those found for the two-dimensional idealization of reference 14.

The results of figure 2(a) for the two-dimensional idealization with specified

Px shows that the flutter-speed parameter hcr decreases with an increase of

_x in the unbuckled range and then in the buckled range does not change with

further increase of P--x. However, figures 2(b) and 2(c) indicate that if length-

width-ratio effects are considered, flutter-speed parameter does vary with the

magnitude of _x in the buckled range and, except for a small region shown in

figure 2(c), increased with an increase of Px. Similar length-width-ratio

effects were found for the variation of kcr with Px =Py in figure 4 and

with _ = _V in figure 5. This variation of flutter-speed parameter kcr with

edge-load parameter is in qualitative agreement with experimental results. (See

refs. 4 to 7-)

Results showing the variation of kcr with Px for v = 2, even though not

applicable in the buckled range because of the particular modal solution assumed,

are presented in figure 2(d) since they give an indication of the problems that

arise in the analysis of long panels. For such panels, the flutter-speed param-

eter first decreases to a zero value and then increases as Px increases until

buckling occurs in a mode that divides the panel into approximately square seg-

ments. Thus, in figure 2(d), the zero flutter speed occurs at Px = 13, and

buckling will occur with essentially two half-waves in the streamwise direction.

(The buckling loads without airflow for buckling into one, two, three, or four

half-waves are given by P-x = 25, 16, 18.77, and 25, respectively.) It thus

appears that for long panels with specified streamwise load Px, the most critical

flutter problem appears in the unbuckled range. However, the picture would be

changed quantitatively if effects of aerodynamic damping were included; the zero

flutter speed would be precluded.

Figure 3 for specified Py shows that before buckling, as was demonstrated

in reference 9, there is no variation of kcr with Py. This situation is no

longer true after buckling, however, since then hcr increases with an increase

of Py. Although the effect of Py on flutter of unbuckled panels was negligi-

ble, these forces become significant for buckled panels.

Limitations of analysis.- The results of this analysis are limited quanti-

tatively to small values of a/b by the use of the two-mode solution and by the

assumption of aerodynamic strip theory. The results can only be extended quali-

tatively to higher values of a/b, which are practical values for construction

purposes. A quantitative analysis for such length-width ratios would be difficult

because it would require consideration of more modes in order to allow the proper

number of waves in the streamwise direction and would probably require a more

refined aerodynamic surface theory.

The results of the present analysis qualitatively agree with experiment (see,

for example, ref. 5) in that increasing streamwlse compression (or heating of a
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restrained panel) first decreases the critical flutter speed and then after

buckling, increases it. (See figs. 2, 4, and 5.)

Effects of Static-Pressure Differential

In many experimental flutter investigations of plates, a static-pressure
differential arises across the thickness of the plate. The experimentalist has

the choice of controlling and thus eliminating this static-pressure differential

during the experiment or of including its effects on the flutter results. In

order to estimate these effects, the present analysis includes the contribution

of static-pressure differential. It can be seen from equations (34) and (35)

that the static-pressure differential Ap only has an effect on the static con-

figurations with an odd number of half-waves in the cross-flow direction (j odd).

Furthermore, C1 = C2 = 0 is not a solution to equations (34) and (35) when J

is odd; therefore, in this case, the only static configurations possible are

deflected configurations. No numerical computations have been included in the

present paper, but based on the results of reference 15 for a length-width ratio

of zero (v = 0), it is expected that the effect of static-pressure differential

would be to raise the flutter boundary.

CONCLUDINGREMARKS

A supersonic flutter analysis is presented for a simply supported rectangular

panel subjected either to specified in-plane compressive edge loads or to speci-

fied total in-plane shortenings alongwith a specified uniformtemperature change.

The analysis employs a Galerkin solution, which uses two static mode shapes. The

analysis includes the effects of static-pressure differential. Numerical results

for zero static-pressure differential are presented for panels with ratios of the

length in the streamwlse direction to the half-wavelength in the cross-flow direc-

tion equal to O, 1/2, l, and 2 for the following specified In-plane boundary edge

conditions: (a) streamwise compressive loading only, (b) cross-flow compressive

loading only, (c) equal stre_se and cross-flow compressive loading or (d) uni-

form temperature increment with no in-plane displacements of the edges of the

panel. The results in the unbuckled range reduce to those found in reference 9

which showed that an increase in streamwise compression causes a decrease in

flutter speed and that the flutter speed is independent of cross-flow compression.

In the buckled range, the results for a length-width ratio equal to zero reduce
to those of the two-dimensional idealization of reference 14 which showed that the

flutter speed is independent of compressive load or of in-plane shortening. In

contrast the results for finite width panels indicate generally that an increase

in compressive load or in-plane shortening is accompanied by an increase in

flutter speed. The results of the analysis are found to be in qualitative agree-

ment with experiment.

No numerical results are presented for panels with static-pressure differ-

ential; however, the analysis shows qualitatively that static-pressure differen-

tial only has an effect on flutter modes which are symmetric in the cross-flow
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direction. For such cases the analysis also shows that the only static configu-

rations possible are deflected configurations; thus, the distinction between

buckled and unbuckled panels is obscured when effects of static-pressure differ-

ential are considered.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Station, Hampton, Va., December ll, 1962.
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